Elements 2.0#
meta_overlay#
Overlays the metadata on the video frame to visualize the inference results.
Capabilities#
SINK template: sink |
|
SRC template: src |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
async-handling |
The bin will handle Asynchronous state changes Default: False |
message-forward |
Forwards all children messages Default: False |
preprocess |
Pre-processing element Default: None |
process |
Main processing element Default: None |
postprocess |
Post-processing element Default: None |
aggregate |
(Optional) Element to aggregate preprocess/process/postprocess result and original frame Default: None |
postaggregate |
(Optional) Element inserted after aggregation element Default: None |
preprocess-queue-size |
Size of queue (in number buffers) before pre-processing element. Special values: -1 means no queue element, 0 means queue of unlimited size Default: 0 |
process-queue-size |
Size of queue (in number buffers) before processing element. Special values: -1 means no queue element, 0 means queue of unlimited size Default: 0 |
postprocess-queue-size |
Size of queue (in number buffers) before post-processing element. Special values: -1 means no queue element, 0 means queue of unlimited size Default: 0 |
aggregate-queue-size |
Size of queue (in number buffers) for original frames between ‘tee’ and aggregate element. Special values: -1 means no queue element, 0 means queue of unlimited size Default: 0 |
postaggregate-queue-size |
Size of queue (in number buffers) between aggregate and post-aggregate elements. Special values: -1 means no queue element, 0 means queue of unlimited size Default: 0 |
device |
Target device for meta_overlaying Default: <enum CPU device on system memory of type MetaOverlayDevice> |
object_classify#
Performs object classification. Accepts the ROI or full frame as an input and outputs classification results with metadata.
Capabilities#
SINK template: sink |
|
SRC template: src |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
async-handling |
The bin will handle Asynchronous state changes Default: False |
message-forward |
Forwards all children messages Default: False |
preprocess |
Pre-processing element Default: None |
process |
Main processing element Default: None |
postprocess |
Post-processing element Default: None |
aggregate |
(Optional) Element to aggregate preprocess/process/postprocess result and original frame Default: None |
postaggregate |
(Optional) Element inserted after aggregation element Default: None |
preprocess-queue-size |
Size of queue (in number buffers) before pre-processing element. Special values: -1 means no queue element, 0 means queue of unlimited size Default: 0 |
process-queue-size |
Size of queue (in number buffers) before processing element. Special values: -1 means no queue element, 0 means queue of unlimited size Default: 0 |
postprocess-queue-size |
Size of queue (in number buffers) before post-processing element. Special values: -1 means no queue element, 0 means queue of unlimited size Default: 0 |
aggregate-queue-size |
Size of queue (in number buffers) for original frames between ‘tee’ and aggregate element. Special values: -1 means no queue element, 0 means queue of unlimited size Default: 0 |
postaggregate-queue-size |
Size of queue (in number buffers) between aggregate and post-aggregate elements. Special values: -1 means no queue element, 0 means queue of unlimited size Default: 0 |
model |
Path to inference model network file Default: “” |
ie-config |
Comma separated list of KEY=VALUE parameters for inference configuration Default: “” |
device |
Target device for inference. Please see inference backend documentation (ex, OpenVINO™ Toolkit) for list of supported devices. Default: CPU |
model-instance-id |
Identifier for sharing resources between inference elements of the same type. Elements with the instance-id will share model and other properties. If not specified, a unique identifier will be generated. Default: “” |
nireq |
Maximum number of inference requests running in parallel Default: 0 |
batch-size |
Number of frames batched together for a single inference. If the batch-size is 0, then it will be set by default to be optimal for the device. Not all models support batching. Use model optimizer to ensure that the model has batching support. Default: 0 |
model-proc |
Path to JSON file with parameters describing how to build pre-process and post-process sub-pipelines Default: “” |
pre-process-backend |
Preprocessing backend type Default: <enum Automatic of type VideoInferenceBackend> |
inference-interval |
Run inference for every Nth frame Default: 1 |
roi-inference-interval |
Determines how often to run inference on each ROI object. Only valid if each ROI object has unique object id (requires object tracking after object detection) Default: 1 |
inference-region |
Region on which inference will be performed - full-frame or on each ROI (region of interest)bounding-box area Default: <enum Perform inference for full frame of type VideoInferenceRegion> |
object-class |
Run inference only on Region-Of-Interest with specified object class Default: “” |
labels |
Path to file containing model’s output layer labels or comma separated list of KEY=VALUE pairs where KEY is name of output layer and VALUE is path to labels file. If provided, labels from model-proc won’t be loaded Default: “” |
labels-file |
Path to file containing model’s output layer labels. If provided, labels from model-proc won’t be loaded Default: “” |
attach-tensor-data |
If true, metadata will contain both post-processing results and raw tensor data. If false, metadata will contain post-processing results only. Default: True |
threshold |
Threshold for detection results. Only regions of interest with confidence values above the threshold will be added to the frame. Zero means default (auto-selected) threshold Default: 0.0 |
scale-method |
Scale method to use in pre-preprocessing before inference Default: <enum Default of type VideoInferenceScaleMethod> |
repeat-metadata |
If true and inference-interval > 1, metadata with last inference results will be attached to frames if inference skipped. If true and roi-inference-interval > 1, it requires object-id for each roi, so requires object tracking element inserted before this element. Default: False |
reclassify-interval |
Determines how often to reclassify tracked objects. Only valid when used in conjunction with gvatrack. The following values are acceptable:
Default: 1 |
object_detect#
Performs inference-based object detection
Capabilities#
SINK template: sink |
|
SRC template: src |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
async-handling |
The bin will handle Asynchronous state changes Default: False |
message-forward |
Forwards all children messages Default: False |
preprocess |
Pre-processing element Default: None |
process |
Main processing element Default: None |
postprocess |
Post-processing element Default: None |
aggregate |
(Optional) Element to aggregate preprocess/process/postprocess result and original frame Default: None |
postaggregate |
(Optional) Element inserted after aggregation element Default: None |
preprocess-queue-size |
Size of queue (in number buffers) before pre-processing element. Special values: -1 means no queue element, 0 means queue of unlimited size Default: 0 |
process-queue-size |
Size of queue (in number buffers) before processing element. Special values: -1 means no queue element, 0 means queue of unlimited size Default: 0 |
postprocess-queue-size |
Size of queue (in number buffers) before post-processing element. Special values: -1 means no queue element, 0 means queue of unlimited size Default: 0 |
aggregate-queue-size |
Size of queue (in number buffers) for original frames between ‘tee’ and aggregate element. Special values: -1 means no queue element, 0 means queue of unlimited size Default: 0 |
postaggregate-queue-size |
Size of queue (in number buffers) between aggregate and post-aggregate elements. Special values: -1 means no queue element, 0 means queue of unlimited size Default: 0 |
model |
Path to inference model network file Default: “” |
ie-config |
Comma separated list of KEY=VALUE parameters for inference configuration Default: “” |
device |
Target device for inference. Please see inference backend documentation (ex, OpenVINO™ Toolkit) for list of supported devices. Default: CPU |
model-instance-id |
Identifier for sharing resources between inference elements of the same type. Elements with the instance-id will share model and other properties. If not specified, a unique identifier will be generated. Default: “” |
nireq |
Maximum number of inference requests running in parallel Default: 0 |
batch-size |
Number of frames batched together for a single inference. If the batch-size is 0, then it will be set by default to be optimal for the device. Not all models support batching. Use model optimizer to ensure that the model has batching support. Default: 0 |
model-proc |
Path to JSON file with parameters describing how to build pre-process and post-process sub-pipelines Default: “” |
pre-process-backend |
Preprocessing backend type Default: <enum Automatic of type VideoInferenceBackend> |
inference-interval |
Run inference for every Nth frame Default: 1 |
roi-inference-interval |
Determines how often to run inference on each ROI object. Only valid if each ROI object has unique object id (requires object tracking after object detection) Default: 1 |
inference-region |
Region on which inference will be performed - full-frame or on each ROI (region of interest)bounding-box area Default: <enum Perform inference for full frame of type VideoInferenceRegion> |
object-class |
Run inference only on Region-Of-Interest with specified object class Default: “” |
labels |
Path to file containing model’s output layer labels or comma separated list of KEY=VALUE pairs where KEY is name of output layer and VALUE is path to labels file. If provided, labels from model-proc won’t be loaded Default: “” |
labels-file |
Path to file containing model’s output layer labels. If provided, labels from model-proc won’t be loaded Default: “” |
attach-tensor-data |
If true, metadata will contain both post-processing results and raw tensor data. If false, metadata will contain post-processing results only. Default: True |
threshold |
Threshold for detection results. Only regions of interest with confidence values above the threshold will be added to the frame. Zero means default (auto-selected) threshold Default: 0.0 |
scale-method |
Scale method to use in pre-preprocessing before inference Default: <enum Default of type VideoInferenceScaleMethod> |
repeat-metadata |
If true and inference-interval > 1, metadata with last inference results will be attached to frames if inference skipped. If true and roi-inference-interval > 1, it requires object-id for each roi, so requires object tracking element inserted before this element. Default: False |
object_track#
Assigns unique ID to detected objects
Capabilities#
SINK template: sink |
|
SRC template: src |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
async-handling |
The bin will handle Asynchronous state changes Default: False |
message-forward |
Forwards all children messages Default: False |
preprocess |
Pre-processing element Default: None |
process |
Main processing element Default: None |
postprocess |
Post-processing element Default: None |
aggregate |
(Optional) Element to aggregate preprocess/process/postprocess result and original frame Default: None |
postaggregate |
(Optional) Element inserted after aggregation element Default: None |
preprocess-queue-size |
Size of queue (in number buffers) before pre-processing element. Special values: -1 means no queue element, 0 means queue of unlimited size Default: 0 |
process-queue-size |
Size of queue (in number buffers) before processing element. Special values: -1 means no queue element, 0 means queue of unlimited size Default: 0 |
postprocess-queue-size |
Size of queue (in number buffers) before post-processing element. Special values: -1 means no queue element, 0 means queue of unlimited size Default: 0 |
aggregate-queue-size |
Size of queue (in number buffers) for original frames between ‘tee’ and aggregate element. Special values: -1 means no queue element, 0 means queue of unlimited size Default: 0 |
postaggregate-queue-size |
Size of queue (in number buffers) between aggregate and post-aggregate elements. Special values: -1 means no queue element, 0 means queue of unlimited size Default: 0 |
model |
Path to inference model network file Default: “” |
ie-config |
Comma separated list of KEY=VALUE parameters for inference configuration Default: “” |
device |
Target device for inference. Please see inference backend documentation (ex, OpenVINO™ Toolkit) for list of supported devices. Default: CPU |
model-instance-id |
Identifier for sharing resources between inference elements of the same type. Elements with the instance-id will share model and other properties. If not specified, a unique identifier will be generated. Default: “” |
nireq |
Maximum number of inference requests running in parallel Default: 0 |
batch-size |
Number of frames batched together for a single inference. If the batch-size is 0, then it will be set by default to be optimal for the device. Not all models support batching. Use model optimizer to ensure that the model has batching support. Default: 0 |
model-proc |
Path to JSON file with parameters describing how to build pre-process and post-process sub-pipelines Default: “” |
pre-process-backend |
Preprocessing backend type Default: <enum Automatic of type VideoInferenceBackend> |
inference-interval |
Run inference for every Nth frame Default: 1 |
roi-inference-interval |
Determines how often to run inference on each ROI object. Only valid if each ROI object has unique object id (requires object tracking after object detection) Default: 1 |
inference-region |
Region on which inference will be performed - full-frame or on each ROI (region of interest)bounding-box area Default: <enum Perform inference for full frame of type VideoInferenceRegion> |
object-class |
Run inference only on Region-Of-Interest with specified object class Default: “” |
labels |
Path to file containing model’s output layer labels or comma separated list of KEY=VALUE pairs where KEY is name of output layer and VALUE is path to labels file. If provided, labels from model-proc won’t be loaded Default: “” |
labels-file |
Path to file containing model’s output layer labels. If provided, labels from model-proc won’t be loaded Default: “” |
attach-tensor-data |
If true, metadata will contain both post-processing results and raw tensor data. If false, metadata will contain post-processing results only. Default: True |
threshold |
Threshold for detection results. Only regions of interest with confidence values above the threshold will be added to the frame. Zero means default (auto-selected) threshold Default: 0.0 |
scale-method |
Scale method to use in pre-preprocessing before inference Default: <enum Default of type VideoInferenceScaleMethod> |
repeat-metadata |
If true and inference-interval > 1, metadata with last inference results will be attached to frames if inference skipped. If true and roi-inference-interval > 1, it requires object-id for each roi, so requires object tracking element inserted before this element. Default: False |
generate-objects |
If true, generate objects (according to previous trajectory) if not detected on current frame Default: True |
adjust-objects |
If true, adjust object position for more smooth trajectory Default: True |
tracking-per-class |
If true, object association takes into account object class Default: False |
spatial-feature |
Spatial feature used by object tracking algorithm Default: <enum Spatial feature not used (only temporal features used, such as object shape and trajectory) of type SpatialFeatureType> |
spatial-feature-distance |
Method to calculate distance between two spatial features Default: <enum Spatial feature not used of type SpatialFeatureDistanceType> |
tracking-type |
DEPRECATED - use other properties according to the following mapping: zero-term-imageless: generate-objects=false adjust-objects=false spatial-feature=none zero-term: generate-objects=false adjust-objects=false spatial-feature=sliced-histogram short-term-imageless: generate-objects=true adjust-objects=false spatial-feature=none short-term: generate-objects=true adjust-objects=false spatial-feature=sliced-histogram Default: “” |
processbin#
Bin element for processing pipelines using branching: tee name=t t. ! <preprocess> ! <process> ! <postprocess> ! <aggregate> t. ! aggregate
Capabilities#
SINK template: sink |
|
SRC template: src |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
async-handling |
The bin will handle Asynchronous state changes Default: False |
message-forward |
Forwards all children messages Default: False |
preprocess |
Pre-processing element Default: None |
process |
Main processing element Default: None |
postprocess |
Post-processing element Default: None |
aggregate |
(Optional) Element to aggregate preprocess/process/postprocess result and original frame Default: None |
postaggregate |
(Optional) Element inserted after aggregation element Default: None |
preprocess-queue-size |
Size of queue (in number buffers) before pre-processing element. Special values: -1 means no queue element, 0 means queue of unlimited size Default: 0 |
process-queue-size |
Size of queue (in number buffers) before processing element. Special values: -1 means no queue element, 0 means queue of unlimited size Default: 0 |
postprocess-queue-size |
Size of queue (in number buffers) before post-processing element. Special values: -1 means no queue element, 0 means queue of unlimited size Default: 0 |
aggregate-queue-size |
Size of queue (in number buffers) for original frames between ‘tee’ and aggregate element. Special values: -1 means no queue element, 0 means queue of unlimited size Default: 0 |
postaggregate-queue-size |
Size of queue (in number buffers) between aggregate and post-aggregate elements. Special values: -1 means no queue element, 0 means queue of unlimited size Default: 0 |
video_inference#
Runs Deep Learning inference on any model with RGB-like input
Capabilities#
SINK template: sink |
|
SRC template: src |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
async-handling |
The bin will handle Asynchronous state changes Default: False |
message-forward |
Forwards all children messages Default: False |
preprocess |
Pre-processing element Default: None |
process |
Main processing element Default: None |
postprocess |
Post-processing element Default: None |
aggregate |
(Optional) Element to aggregate preprocess/process/postprocess result and original frame Default: None |
postaggregate |
(Optional) Element inserted after aggregation element Default: None |
preprocess-queue-size |
Size of queue (in number buffers) before pre-processing element. Special values: -1 means no queue element, 0 means queue of unlimited size Default: 0 |
process-queue-size |
Size of queue (in number buffers) before processing element. Special values: -1 means no queue element, 0 means queue of unlimited size Default: 0 |
postprocess-queue-size |
Size of queue (in number buffers) before post-processing element. Special values: -1 means no queue element, 0 means queue of unlimited size Default: 0 |
aggregate-queue-size |
Size of queue (in number buffers) for original frames between ‘tee’ and aggregate element. Special values: -1 means no queue element, 0 means queue of unlimited size Default: 0 |
postaggregate-queue-size |
Size of queue (in number buffers) between aggregate and post-aggregate elements. Special values: -1 means no queue element, 0 means queue of unlimited size Default: 0 |
model |
Path to inference model network file Default: “” |
ie-config |
Comma separated list of KEY=VALUE parameters for inference configuration Default: “” |
device |
Target device for inference. Please see inference backend documentation (ex, OpenVINO™ Toolkit) for list of supported devices. Default: CPU |
model-instance-id |
Identifier for sharing resources between inference elements of the same type. Elements with the instance-id will share model and other properties. If not specified, a unique identifier will be generated. Default: “” |
nireq |
Maximum number of inference requests running in parallel Default: 0 |
batch-size |
Number of frames batched together for a single inference. If the batch-size is 0, then it will be set by default to be optimal for the device. Not all models support batching. Use model optimizer to ensure that the model has batching support. Default: 0 |
model-proc |
Path to JSON file with parameters describing how to build pre-process and post-process sub-pipelines Default: “” |
pre-process-backend |
Preprocessing backend type Default: <enum Automatic of type VideoInferenceBackend> |
inference-interval |
Run inference for every Nth frame Default: 1 |
roi-inference-interval |
Determines how often to run inference on each ROI object. Only valid if each ROI object has unique object id (requires object tracking after object detection) Default: 1 |
inference-region |
Region on which inference will be performed - full-frame or on each ROI (region of interest)bounding-box area Default: <enum Perform inference for full frame of type VideoInferenceRegion> |
object-class |
Run inference only on Region-Of-Interest with specified object class Default: “” |
labels |
Path to file containing model’s output layer labels or comma separated list of KEY=VALUE pairs where KEY is name of output layer and VALUE is path to labels file. If provided, labels from model-proc won’t be loaded Default: “” |
labels-file |
Path to file containing model’s output layer labels. If provided, labels from model-proc won’t be loaded Default: “” |
attach-tensor-data |
If true, metadata will contain both post-processing results and raw tensor data. If false, metadata will contain post-processing results only. Default: True |
threshold |
Threshold for detection results. Only regions of interest with confidence values above the threshold will be added to the frame. Zero means default (auto-selected) threshold Default: 0.0 |
scale-method |
Scale method to use in pre-preprocessing before inference Default: <enum Default of type VideoInferenceScaleMethod> |
repeat-metadata |
If true and inference-interval > 1, metadata with last inference results will be attached to frames if inference skipped. If true and roi-inference-interval > 1, it requires object-id for each roi, so requires object tracking element inserted before this element. Default: False |
batch_create#
Accumulate multiple buffers into single buffer with multiple GstMemory
Capabilities#
SRC template: src |
|
SINK template: sink |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
qos |
Handle Quality-of-Service events Default: False |
batch-size |
Number of frames to batch together Default: 1 |
batch_split#
Split input tensor (remove batch dimension from tensor shape)
Capabilities#
SRC template: src |
|
SINK template: sink |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
qos |
Handle Quality-of-Service events Default: False |
capsrelax#
Pass data without modification, relaxes formats
Capabilities#
SINK template: sink |
|
SRC template: src |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
qos |
Handle Quality-of-Service events Default: False |
gvadrop#
Pass / drop custom number of frames in pipeline
Capabilities#
SINK template: sink |
|
SRC template: src |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
qos |
Handle Quality-of-Service events Default: False |
pass-frames |
Number of frames to pass along the pipeline. Default: 1 |
drop-frames |
Number of frames to drop. Default: 0 |
mode |
Mode defines what to do with dropped frames Default: <enum Default of type GvaDropMode> |
meta_aggregate#
Muxes video streams with tensor’s ROI into single stream
Capabilities#
SINK template: meta_%u |
|
SINK template: tensor_%u |
|
SINK template: sink |
|
SRC template: src |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
latency |
Additional latency in live mode to allow upstream to take longer to produce buffers for the current position (in nanoseconds) Default: 0 |
min-upstream-latency |
When sources with a higher latency are expected to be plugged in dynamically after the aggregator has started playing, this allows overriding the minimum latency reported by the initial source(s). This is only taken into account when larger than the actually reported minimum latency. (nanoseconds) Default: 0 |
start-time-selection |
Decides which start time is output Default: <enum GST_AGGREGATOR_START_TIME_SELECTION_ZERO of type GstAggregatorStartTimeSelection> |
start-time |
Start time to use if start-time-selection=set Default: 18446744073709551615 |
emit-signals |
Send signals Default: False |
attach-tensor-data |
If true, additionally copies tensor data into metadata Default: True |
meta_smooth#
smooth metadata
Capabilities#
SRC template: src |
|
SINK template: sink |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
qos |
Handle Quality-of-Service events Default: False |
roi_split#
Split buffer with multiple GstVideoRegionOfInterestMeta into multiple buffers
Capabilities#
SRC template: src |
|
SINK template: sink |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
qos |
Handle Quality-of-Service events Default: False |
object-class |
Filter ROI list by object class(es) (comma separated list if multiple). Output only ROIs with specified object class(es) Default: “” |
video_frames_buffer#
Buffer and optionally repeat compressed video frames
Capabilities#
SRC template: src |
|
SINK template: sink |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
qos |
Handle Quality-of-Service events Default: False |
num-input-frames |
Number input frames to buffer Default: 0 |
num-output-frames |
Max number output frames in ‘loop’ mode Default: 0 |
rate_adjust#
Adjust frame rate. Output frame rate is input rate multiplied by (numerator/denominator)
Capabilities#
SINK template: sink |
|
SRC template: src |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
qos |
Handle Quality-of-Service events Default: False |
ratio |
Frame rate ratio - output frame rate is input rate multiplied by specified ratio. Current limitation: ratio <= 1 Default: None |
tensor_convert#
Convert (zero-copy if possible) between video/audio and tensors media type
Capabilities#
SINK template: sink |
|
SRC template: src |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
qos |
Handle Quality-of-Service events Default: False |
tensor_histogram#
Calculates histogram on tensors of UInt8 data type and NHWC layout
Capabilities#
SINK template: sink |
|
SRC template: src |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
qos |
Handle Quality-of-Service events Default: False |
width |
Input tensor width, assuming tensor in NHWC or NCHW layout Default: 64 |
height |
Input tensor height, assuming tensor in NHWC or NCHW layout Default: 64 |
num-slices-x |
Number slices along X-axis Default: 1 |
num-slices-y |
Number slices along Y-axis Default: 1 |
num-bins |
Number bins in histogram calculation. Example, for 3-channel tensor (RGB image), output histogram size is equal to (num_bin^3 * num_slices_x * num_slices_y) Default: 8 |
batch-size |
Batch size Default: 1 |
device |
CPU or GPU or GPU.0, GPU.1, .. Default: “” |
tensor_postproc_add_params#
Post-processing to only add properties/parameters to metadata
Capabilities#
SINK template: sink |
|
SRC template: src |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
qos |
Handle Quality-of-Service events Default: False |
attribute-name |
Name for metadata created and attached by this element Default: attribute |
format |
Format description Default: “” |
tensor_postproc_detection#
Post-processing of object detection inference to extract bounding box coordinates, confidence, label, mask
Capabilities#
SINK template: sink |
|
SRC template: src |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
qos |
Handle Quality-of-Service events Default: False |
labels |
Array of object classes Default: None |
labels-file |
Path to .txt file containing object classes (one per line) Default: “” |
threshold |
Detection threshold - only objects with confidence values above the threshold will be added to the frame Default: 0.5 |
box-index |
Index of layer containing bounding box data Default: -1 |
confidence-index |
Index of layer containing confidence data Default: -1 |
label-index |
Index of layer containing label data Default: -1 |
imageid-index |
Index of layer containing imageid data Default: -1 |
mask-index |
Index of layer containing mask data Default: -1 |
box-offset |
Offset inside layer containing bounding box data Default: -1 |
confidence-offset |
Offset inside layer containing confidence data Default: -1 |
label-offset |
Offset inside layer containing label data Default: -1 |
imageid-offset |
Offset inside layer containing imageid data Default: -1 |
tensor_postproc_label#
Post-processing of classification inference to extract object classes
Capabilities#
SINK template: sink |
|
SRC template: src |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
qos |
Handle Quality-of-Service events Default: False |
method |
Method used to post-process tensor data Default: <enum max of type method> |
labels |
Array of object classes Default: None |
labels-file |
Path to .txt file containing object classes (one per line) Default: “” |
attribute-name |
Name for metadata created and attached by this element Default: “” |
layer-name |
Name of output layer to process (in case of multiple output tensors) Default: “” |
threshold |
Threshold for confidence values Default: 0.0 |
compound-threshold |
Threshold for compound method Default: 0.5 |
tensor_postproc_text#
Post-processing to convert tensor data into text
Capabilities#
SINK template: sink |
|
SRC template: src |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
qos |
Handle Quality-of-Service events Default: False |
text-scale |
Scale tensor values before converting to text Default: 1.0 |
text-precision |
Precision for floating-point to text conversion Default: 0 |
attribute-name |
Name for metadata created and attached by this element Default: “” |
layer-name |
Name of output layer to process (in case of multiple output tensors) Default: “” |
tensor_postproc_yolo#
Post-processing of YOLO models to extract bounding box list
Capabilities#
SINK template: sink |
|
SRC template: src |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
qos |
Handle Quality-of-Service events Default: False |
version |
Yolo’s version number. Supported only from 3 to 5 Default: 0 |
labels |
Array of object classes Default: None |
labels-file |
Path to .txt file containing object classes (one per line) Default: “” |
threshold |
Detection threshold - only objects with confidence value above the threshold will be added to the frame Default: 0.5 |
anchors |
Anchor values array Default: None |
masks |
Masks values array (1 dimension) Default: None |
iou-threshold |
IntersectionOverUnion threshold Default: 0.5 |
do-cls-softmax |
If true, perform softmax Default: True |
output-sigmoid-activation |
output_sigmoid_activation Default: True |
cells-number |
Number of cells. Use if number of cells along x and y axes is the same (0 = autodetection) Default: 0 |
cells-number-x |
Number of cells along x-axis Default: 0 |
cells-number-y |
Number of cells along y-axis Default: 0 |
bbox-number-on-cell |
Number of bounding boxes that can be predicted per cell (0 = autodetection) Default: 0 |
classes |
Number of classes Default: 0 |
nms |
Apply Non-Maximum Suppression (NMS) filter to bounding boxes Default: True |
tensor_sliding_window#
Sliding aggregation of input tensors
Capabilities#
SINK template: sink |
|
SRC template: src |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
qos |
Handle Quality-of-Service events Default: False |
openvino_tensor_inference#
Inference on OpenVINO™ toolkit backend
Capabilities#
SINK template: sink |
|
SRC template: src |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
qos |
Handle Quality-of-Service events Default: False |
model |
Path to model file in OpenVINO™ toolkit or ONNX format Default: “” |
device |
Target device for inference. Please see OpenVINO™ toolkit documentation for list of supported devices. Default: CPU |
config |
Comma separated list of KEY=VALUE parameters for Inference Engine configuration Default: “” |
batch-size |
Batch size Default: 1 |
buffer-pool-size |
Output buffer pool size (functionally same as OpenVINO™ toolkit nireq parameter) Default: 16 |
shared-instance-id |
Identifier for sharing backend instance between multiple elements, for example in elements processing multiple inputs Default: “” |
openvino_video_inference#
Inference on OpenVINO™ toolkit backend
Capabilities#
SINK template: sink |
|
SRC template: src |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
qos |
Handle Quality-of-Service events Default: False |
model |
Path to model file in OpenVINO™ toolkit or ONNX format Default: “” |
device |
Target device for inference. Please see OpenVINO™ toolkit documentation for list of supported devices. Default: CPU |
config |
Comma separated list of KEY=VALUE parameters for Inference Engine configuration Default: “” |
batch-size |
Batch size Default: 1 |
buffer-pool-size |
Output buffer pool size (functionally same as OpenVINO™ toolkit nireq parameter) Default: 16 |
shared-instance-id |
Identifier for sharing backend instance between multiple elements, for example in elements processing multiple inputs Default: “” |
opencv_cropscale#
Fused video crop and scale on OpenCV backend. Crop operation supports GstVideoCropMeta if attached to input buffer
Capabilities#
SINK template: sink |
|
SRC template: src |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
qos |
Handle Quality-of-Service events Default: False |
add-borders |
Add borders if necessary to keep the aspect ratio Default: False |
opencv_find_contours#
Find contour points of given mask using opencv
Capabilities#
SINK template: sink |
|
SRC template: src |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
qos |
Handle Quality-of-Service events Default: False |
mask-metadata-name |
Name of metadata containing segmentation mask Default: mask |
contour-metadata-name |
Name of metadata created by this element to store contour(s) Default: contour |
threshold |
Mask threshold - only mask pixels with confidence values above the threshold will be used for finding contours Default: 0.5 |
opencv_meta_overlay#
Visualize inference results using OpenCV
Capabilities#
SINK template: sink |
|
SRC template: src |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
qos |
Handle Quality-of-Service events Default: False |
lines-thickness |
Thickness of lines and rectangles Default: 2 |
font-thickness |
Font thickness Default: 1 |
font-scale |
Font scale Default: 1.0 |
attach-label-mask |
Attach label mask as metadata, image not changed Default: False |
opencv_object_association#
Assigns unique ID to ROI objects based on objects trajectory and (optionally) feature vector obtained from ROI metadata
Capabilities#
SINK template: sink |
|
SRC template: src |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
qos |
Handle Quality-of-Service events Default: False |
generate-objects |
If true, generate objects (according to previous trajectory) if not detected on current frame Default: True |
adjust-objects |
If true, adjust object position for more smooth trajectory Default: True |
tracking-per-class |
If true, object association takes into account object class Default: False |
spatial-feature-metadata-name |
Name of metadata containing spatial feature Default: spatial-feature |
spatial-feature-distance |
Method to calculate distance between two spatial features Default: <enum bhattacharyya of type spatial-feature-distance> |
shape-feature-weight |
Weighting factor for shape-based feature Default: 0.75 |
trajectory-feature-weight |
Weighting factor for trajectory-based feature Default: 0.5 |
spatial-feature-weight |
Weighting factor for spatial feature Default: 0.25 |
min-region-ratio-in-boundary |
Default: 0.75 |
opencv_remove_background#
Remove background using mask
Capabilities#
SINK template: sink |
|
SRC template: src |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
qos |
Handle Quality-of-Service events Default: False |
mask-metadata-name |
Name of metadata containing segmentation mask Default: mask |
threshold |
Mask threshold - only mask pixels with confidence values above the threshold will be used for setting transparency Default: 0.5 |
opencv_tensor_normalize#
Convert U8 tensor to F32 tensor with normalization
Capabilities#
SINK template: sink |
|
SRC template: src |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
qos |
Handle Quality-of-Service events Default: False |
range |
Normalization range MIN, MAX. Example: <0,1> Default: None |
mean |
Mean values per channel. Example: <0.485,0.456,0.406> Default: None |
std |
Standard deviation values per channel. Example: <0.229,0.224,0.225> Default: None |
opencv_warp_affine#
Rotation using cv::warpAffine
Capabilities#
SINK template: sink |
|
SRC template: src |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
qos |
Handle Quality-of-Service events Default: False |
angle |
Angle by which the picture is rotated (in radians) Default: 0.0 |
sync |
Wait for OpenCL kernel completion (if running on GPU via cv::UMat) Default: False |
tensor_postproc_human_pose#
Post-processing to extract key points from human pose estimation model output
Capabilities#
SINK template: sink |
|
SRC template: src |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
qos |
Handle Quality-of-Service events Default: False |
point-names |
Array of key point names Default: None |
point-connections |
Array of point connections {name-A0, name-B0, name-A1, name-B1, …} Default: None |
vaapi_batch_proc#
Batched pre-processing with VAAPI memory as input and output
Capabilities#
SINK template: sink |
|
SRC template: src |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
qos |
Handle Quality-of-Service events Default: False |
add-borders |
Add borders if necessary to keep the aspect ratio Default: False |
output-format |
Image format for output frames: BGR or RGB or GRAY Default: BGR |
shared-instance-id |
Identifier for sharing backend instance between multiple elements, for example in elements processing multiple inputs Default: “” |
vaapi_sync#
Synchronize VAAPI surfaces (call vaSyncSurface)
Capabilities#
SINK template: sink |
|
SRC template: src |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
qos |
Handle Quality-of-Service events Default: False |
timeout |
Synchronization timeout (seconds) Default: 10.0 |
opencl_tensor_normalize#
Convert U8 tensor to U8 or F32 tensor with normalization
Capabilities#
SINK template: sink |
|
SRC template: src |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
qos |
Handle Quality-of-Service events Default: False |
shared-instance-id |
Identifier for sharing backend instance between multiple elements, for example in elements processing multiple inputs Default: “” |
vaapi_to_opencl#
Convert memory:VASurface to memory:OpenCL
Capabilities#
SINK template: sink |
|
SRC template: src |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
qos |
Handle Quality-of-Service events Default: False |
sycl_meta_overlay#
Visualize inference results using DPC++/SYCL backend
Capabilities#
SINK template: sink |
|
SRC template: src |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
qos |
Handle Quality-of-Service events Default: False |
lines-thickness |
Thickness of lines and rectangles Default: 2 |
sycl_tensor_histogram#
Calculates histogram on tensors of UInt8 data type and NHWC layout
Capabilities#
SINK template: sink |
|
SRC template: src |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
qos |
Handle Quality-of-Service events Default: False |
width |
Input tensor width, assuming tensor in NHWC or NCHW layout Default: 64 |
height |
Input tensor height, assuming tensor in NHWC or NCHW layout Default: 64 |
num-slices-x |
Number slices along X-axis Default: 1 |
num-slices-y |
Number slices along Y-axis Default: 1 |
num-bins |
Number bins in histogram calculation. Example, for 3-channel tensor (RGB image), output histogram size is equal to (num_bin^3 * num_slices_x * num_slices_y) Default: 8 |
batch-size |
Batch size Default: 1 |
device |
CPU or GPU or GPU.0, GPU.1, .. Default: “” |
inference_openvino#
OpenVINO™ toolkit inference element
Capabilities#
SRC template: src |
|
SINK template: sink |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
qos |
Handle Quality-of-Service events Default: False |
device |
Inference device Default: CPU |
model |
OpenVINO™ toolkit model path Default: “” |
nireq |
Number inference requests Default: 0 |
pytorch_tensor_inference#
PyTorch inference element
Capabilities#
SRC template: src |
|
SINK template: sink |
|
Properties#
Name |
Description |
---|---|
name |
The name of the object Default: None |
parent |
The parent of the object Default: None |
qos |
Handle Quality-of-Service events Default: False |
device |
Inference device Default: cpu |
model |
The full module name of the PyTorch model to be imported from torchvision or model path. Ex. ‘torchvision.models.resnet50’ or ‘/path/to/model.pth’ Default: “” |
model-weights |
PyTorch model weights path. If model-weights is empty, the default weights will be used Default: “” |