Elements 2.0#

meta_overlay#

Overlays the metadata on the video frame to visualize the inference results.

Capabilities#

SINK template: sink

  • Availability: Always

  • Capabilities:

    • video/x-raw

SRC template: src

  • Availability: Always

  • Capabilities:

    • video/x-raw

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

async-handling

The bin will handle Asynchronous state changes

Default: False

message-forward

Forwards all children messages

Default: False

preprocess

Pre-processing element

Default: None

process

Main processing element

Default: None

postprocess

Post-processing element

Default: None

aggregate

(Optional) Element to aggregate preprocess/process/postprocess result and original frame

Default: None

postaggregate

(Optional) Element inserted after aggregation element

Default: None

preprocess-queue-size

Size of queue (in number buffers) before pre-processing element. Special values: -1 means no queue element, 0 means queue of unlimited size

Default: 0

process-queue-size

Size of queue (in number buffers) before processing element. Special values: -1 means no queue element, 0 means queue of unlimited size

Default: 0

postprocess-queue-size

Size of queue (in number buffers) before post-processing element. Special values: -1 means no queue element, 0 means queue of unlimited size

Default: 0

aggregate-queue-size

Size of queue (in number buffers) for original frames between ‘tee’ and aggregate element. Special values: -1 means no queue element, 0 means queue of unlimited size

Default: 0

postaggregate-queue-size

Size of queue (in number buffers) between aggregate and post-aggregate elements. Special values: -1 means no queue element, 0 means queue of unlimited size

Default: 0

device

Target device for meta_overlaying

Default: <enum CPU device on system memory of type MetaOverlayDevice>

object_classify#

Performs object classification. Accepts the ROI or full frame as an input and outputs classification results with metadata.

Capabilities#

SINK template: sink

  • Availability: Always

  • Capabilities:

    • video/x-raw

SRC template: src

  • Availability: Always

  • Capabilities:

    • video/x-raw

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

async-handling

The bin will handle Asynchronous state changes

Default: False

message-forward

Forwards all children messages

Default: False

preprocess

Pre-processing element

Default: None

process

Main processing element

Default: None

postprocess

Post-processing element

Default: None

aggregate

(Optional) Element to aggregate preprocess/process/postprocess result and original frame

Default: None

postaggregate

(Optional) Element inserted after aggregation element

Default: None

preprocess-queue-size

Size of queue (in number buffers) before pre-processing element. Special values: -1 means no queue element, 0 means queue of unlimited size

Default: 0

process-queue-size

Size of queue (in number buffers) before processing element. Special values: -1 means no queue element, 0 means queue of unlimited size

Default: 0

postprocess-queue-size

Size of queue (in number buffers) before post-processing element. Special values: -1 means no queue element, 0 means queue of unlimited size

Default: 0

aggregate-queue-size

Size of queue (in number buffers) for original frames between ‘tee’ and aggregate element. Special values: -1 means no queue element, 0 means queue of unlimited size

Default: 0

postaggregate-queue-size

Size of queue (in number buffers) between aggregate and post-aggregate elements. Special values: -1 means no queue element, 0 means queue of unlimited size

Default: 0

model

Path to inference model network file

Default: “”

ie-config

Comma separated list of KEY=VALUE parameters for inference configuration

Default: “”

device

Target device for inference. Please see inference backend documentation (ex, OpenVINO™ Toolkit) for list of supported devices.

Default: CPU

model-instance-id

Identifier for sharing resources between inference elements of the same type. Elements with the instance-id will share model and other properties. If not specified, a unique identifier will be generated.

Default: “”

nireq

Maximum number of inference requests running in parallel

Default: 0

batch-size

Number of frames batched together for a single inference. If the batch-size is 0, then it will be set by default to be optimal for the device. Not all models support batching. Use model optimizer to ensure that the model has batching support.

Default: 0

model-proc

Path to JSON file with parameters describing how to build pre-process and post-process sub-pipelines

Default: “”

pre-process-backend

Preprocessing backend type

Default: <enum Automatic of type VideoInferenceBackend>

inference-interval

Run inference for every Nth frame

Default: 1

roi-inference-interval

Determines how often to run inference on each ROI object. Only valid if each ROI object has unique object id (requires object tracking after object detection)

Default: 1

inference-region

Region on which inference will be performed - full-frame or on each ROI (region of interest)bounding-box area

Default: <enum Perform inference for full frame of type VideoInferenceRegion>

object-class

Run inference only on Region-Of-Interest with specified object class

Default: “”

labels

Path to file containing model’s output layer labels or comma separated list of KEY=VALUE pairs where KEY is name of output layer and VALUE is path to labels file. If provided, labels from model-proc won’t be loaded

Default: “”

labels-file

Path to file containing model’s output layer labels. If provided, labels from model-proc won’t be loaded

Default: “”

attach-tensor-data

If true, metadata will contain both post-processing results and raw tensor data. If false, metadata will contain post-processing results only.

Default: True

threshold

Threshold for detection results. Only regions of interest with confidence values above the threshold will be added to the frame. Zero means default (auto-selected) threshold

Default: 0.0

scale-method

Scale method to use in pre-preprocessing before inference

Default: <enum Default of type VideoInferenceScaleMethod>

repeat-metadata

If true and inference-interval > 1, metadata with last inference results will be attached to frames if inference skipped. If true and roi-inference-interval > 1, it requires object-id for each roi, so requires object tracking element inserted before this element.

Default: False

reclassify-interval

Determines how often to reclassify tracked objects. Only valid when used in conjunction with gvatrack.

The following values are acceptable:

  • 0 - Do not reclassify tracked objects

  • 1 - Always reclassify tracked objects

  • 2:N - Tracked objects will be reclassified every N frames. Note the inference-interval is applied before determining if an object is to be reclassified (i.e. classification only occurs at a multiple of the inference interval)

Default: 1

object_detect#

Performs inference-based object detection

Capabilities#

SINK template: sink

  • Availability: Always

  • Capabilities:

    • video/x-raw

SRC template: src

  • Availability: Always

  • Capabilities:

    • video/x-raw

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

async-handling

The bin will handle Asynchronous state changes

Default: False

message-forward

Forwards all children messages

Default: False

preprocess

Pre-processing element

Default: None

process

Main processing element

Default: None

postprocess

Post-processing element

Default: None

aggregate

(Optional) Element to aggregate preprocess/process/postprocess result and original frame

Default: None

postaggregate

(Optional) Element inserted after aggregation element

Default: None

preprocess-queue-size

Size of queue (in number buffers) before pre-processing element. Special values: -1 means no queue element, 0 means queue of unlimited size

Default: 0

process-queue-size

Size of queue (in number buffers) before processing element. Special values: -1 means no queue element, 0 means queue of unlimited size

Default: 0

postprocess-queue-size

Size of queue (in number buffers) before post-processing element. Special values: -1 means no queue element, 0 means queue of unlimited size

Default: 0

aggregate-queue-size

Size of queue (in number buffers) for original frames between ‘tee’ and aggregate element. Special values: -1 means no queue element, 0 means queue of unlimited size

Default: 0

postaggregate-queue-size

Size of queue (in number buffers) between aggregate and post-aggregate elements. Special values: -1 means no queue element, 0 means queue of unlimited size

Default: 0

model

Path to inference model network file

Default: “”

ie-config

Comma separated list of KEY=VALUE parameters for inference configuration

Default: “”

device

Target device for inference. Please see inference backend documentation (ex, OpenVINO™ Toolkit) for list of supported devices.

Default: CPU

model-instance-id

Identifier for sharing resources between inference elements of the same type. Elements with the instance-id will share model and other properties. If not specified, a unique identifier will be generated.

Default: “”

nireq

Maximum number of inference requests running in parallel

Default: 0

batch-size

Number of frames batched together for a single inference. If the batch-size is 0, then it will be set by default to be optimal for the device. Not all models support batching. Use model optimizer to ensure that the model has batching support.

Default: 0

model-proc

Path to JSON file with parameters describing how to build pre-process and post-process sub-pipelines

Default: “”

pre-process-backend

Preprocessing backend type

Default: <enum Automatic of type VideoInferenceBackend>

inference-interval

Run inference for every Nth frame

Default: 1

roi-inference-interval

Determines how often to run inference on each ROI object. Only valid if each ROI object has unique object id (requires object tracking after object detection)

Default: 1

inference-region

Region on which inference will be performed - full-frame or on each ROI (region of interest)bounding-box area

Default: <enum Perform inference for full frame of type VideoInferenceRegion>

object-class

Run inference only on Region-Of-Interest with specified object class

Default: “”

labels

Path to file containing model’s output layer labels or comma separated list of KEY=VALUE pairs where KEY is name of output layer and VALUE is path to labels file. If provided, labels from model-proc won’t be loaded

Default: “”

labels-file

Path to file containing model’s output layer labels. If provided, labels from model-proc won’t be loaded

Default: “”

attach-tensor-data

If true, metadata will contain both post-processing results and raw tensor data. If false, metadata will contain post-processing results only.

Default: True

threshold

Threshold for detection results. Only regions of interest with confidence values above the threshold will be added to the frame. Zero means default (auto-selected) threshold

Default: 0.0

scale-method

Scale method to use in pre-preprocessing before inference

Default: <enum Default of type VideoInferenceScaleMethod>

repeat-metadata

If true and inference-interval > 1, metadata with last inference results will be attached to frames if inference skipped. If true and roi-inference-interval > 1, it requires object-id for each roi, so requires object tracking element inserted before this element.

Default: False

object_track#

Assigns unique ID to detected objects

Capabilities#

SINK template: sink

  • Availability: Always

  • Capabilities:

    • video/x-raw

SRC template: src

  • Availability: Always

  • Capabilities:

    • video/x-raw

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

async-handling

The bin will handle Asynchronous state changes

Default: False

message-forward

Forwards all children messages

Default: False

preprocess

Pre-processing element

Default: None

process

Main processing element

Default: None

postprocess

Post-processing element

Default: None

aggregate

(Optional) Element to aggregate preprocess/process/postprocess result and original frame

Default: None

postaggregate

(Optional) Element inserted after aggregation element

Default: None

preprocess-queue-size

Size of queue (in number buffers) before pre-processing element. Special values: -1 means no queue element, 0 means queue of unlimited size

Default: 0

process-queue-size

Size of queue (in number buffers) before processing element. Special values: -1 means no queue element, 0 means queue of unlimited size

Default: 0

postprocess-queue-size

Size of queue (in number buffers) before post-processing element. Special values: -1 means no queue element, 0 means queue of unlimited size

Default: 0

aggregate-queue-size

Size of queue (in number buffers) for original frames between ‘tee’ and aggregate element. Special values: -1 means no queue element, 0 means queue of unlimited size

Default: 0

postaggregate-queue-size

Size of queue (in number buffers) between aggregate and post-aggregate elements. Special values: -1 means no queue element, 0 means queue of unlimited size

Default: 0

model

Path to inference model network file

Default: “”

ie-config

Comma separated list of KEY=VALUE parameters for inference configuration

Default: “”

device

Target device for inference. Please see inference backend documentation (ex, OpenVINO™ Toolkit) for list of supported devices.

Default: CPU

model-instance-id

Identifier for sharing resources between inference elements of the same type. Elements with the instance-id will share model and other properties. If not specified, a unique identifier will be generated.

Default: “”

nireq

Maximum number of inference requests running in parallel

Default: 0

batch-size

Number of frames batched together for a single inference. If the batch-size is 0, then it will be set by default to be optimal for the device. Not all models support batching. Use model optimizer to ensure that the model has batching support.

Default: 0

model-proc

Path to JSON file with parameters describing how to build pre-process and post-process sub-pipelines

Default: “”

pre-process-backend

Preprocessing backend type

Default: <enum Automatic of type VideoInferenceBackend>

inference-interval

Run inference for every Nth frame

Default: 1

roi-inference-interval

Determines how often to run inference on each ROI object. Only valid if each ROI object has unique object id (requires object tracking after object detection)

Default: 1

inference-region

Region on which inference will be performed - full-frame or on each ROI (region of interest)bounding-box area

Default: <enum Perform inference for full frame of type VideoInferenceRegion>

object-class

Run inference only on Region-Of-Interest with specified object class

Default: “”

labels

Path to file containing model’s output layer labels or comma separated list of KEY=VALUE pairs where KEY is name of output layer and VALUE is path to labels file. If provided, labels from model-proc won’t be loaded

Default: “”

labels-file

Path to file containing model’s output layer labels. If provided, labels from model-proc won’t be loaded

Default: “”

attach-tensor-data

If true, metadata will contain both post-processing results and raw tensor data. If false, metadata will contain post-processing results only.

Default: True

threshold

Threshold for detection results. Only regions of interest with confidence values above the threshold will be added to the frame. Zero means default (auto-selected) threshold

Default: 0.0

scale-method

Scale method to use in pre-preprocessing before inference

Default: <enum Default of type VideoInferenceScaleMethod>

repeat-metadata

If true and inference-interval > 1, metadata with last inference results will be attached to frames if inference skipped. If true and roi-inference-interval > 1, it requires object-id for each roi, so requires object tracking element inserted before this element.

Default: False

generate-objects

If true, generate objects (according to previous trajectory) if not detected on current frame

Default: True

adjust-objects

If true, adjust object position for more smooth trajectory

Default: True

tracking-per-class

If true, object association takes into account object class

Default: False

spatial-feature

Spatial feature used by object tracking algorithm

Default: <enum Spatial feature not used (only temporal features used, such as object shape and trajectory) of type SpatialFeatureType>

spatial-feature-distance

Method to calculate distance between two spatial features

Default: <enum Spatial feature not used of type SpatialFeatureDistanceType>

tracking-type

DEPRECATED - use other properties according to the following mapping:

zero-term-imageless: generate-objects=false adjust-objects=false spatial-feature=none

zero-term: generate-objects=false adjust-objects=false spatial-feature=sliced-histogram

short-term-imageless: generate-objects=true adjust-objects=false spatial-feature=none

short-term: generate-objects=true adjust-objects=false spatial-feature=sliced-histogram

Default: “”

processbin#

Bin element for processing pipelines using branching: tee name=t t. ! <preprocess> ! <process> ! <postprocess> ! <aggregate> t. ! aggregate

Capabilities#

SINK template: sink

  • Availability: Always

SRC template: src

  • Availability: Always

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

async-handling

The bin will handle Asynchronous state changes

Default: False

message-forward

Forwards all children messages

Default: False

preprocess

Pre-processing element

Default: None

process

Main processing element

Default: None

postprocess

Post-processing element

Default: None

aggregate

(Optional) Element to aggregate preprocess/process/postprocess result and original frame

Default: None

postaggregate

(Optional) Element inserted after aggregation element

Default: None

preprocess-queue-size

Size of queue (in number buffers) before pre-processing element. Special values: -1 means no queue element, 0 means queue of unlimited size

Default: 0

process-queue-size

Size of queue (in number buffers) before processing element. Special values: -1 means no queue element, 0 means queue of unlimited size

Default: 0

postprocess-queue-size

Size of queue (in number buffers) before post-processing element. Special values: -1 means no queue element, 0 means queue of unlimited size

Default: 0

aggregate-queue-size

Size of queue (in number buffers) for original frames between ‘tee’ and aggregate element. Special values: -1 means no queue element, 0 means queue of unlimited size

Default: 0

postaggregate-queue-size

Size of queue (in number buffers) between aggregate and post-aggregate elements. Special values: -1 means no queue element, 0 means queue of unlimited size

Default: 0

video_inference#

Runs Deep Learning inference on any model with RGB-like input

Capabilities#

SINK template: sink

  • Availability: Always

  • Capabilities:

    • video/x-raw

SRC template: src

  • Availability: Always

  • Capabilities:

    • video/x-raw

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

async-handling

The bin will handle Asynchronous state changes

Default: False

message-forward

Forwards all children messages

Default: False

preprocess

Pre-processing element

Default: None

process

Main processing element

Default: None

postprocess

Post-processing element

Default: None

aggregate

(Optional) Element to aggregate preprocess/process/postprocess result and original frame

Default: None

postaggregate

(Optional) Element inserted after aggregation element

Default: None

preprocess-queue-size

Size of queue (in number buffers) before pre-processing element. Special values: -1 means no queue element, 0 means queue of unlimited size

Default: 0

process-queue-size

Size of queue (in number buffers) before processing element. Special values: -1 means no queue element, 0 means queue of unlimited size

Default: 0

postprocess-queue-size

Size of queue (in number buffers) before post-processing element. Special values: -1 means no queue element, 0 means queue of unlimited size

Default: 0

aggregate-queue-size

Size of queue (in number buffers) for original frames between ‘tee’ and aggregate element. Special values: -1 means no queue element, 0 means queue of unlimited size

Default: 0

postaggregate-queue-size

Size of queue (in number buffers) between aggregate and post-aggregate elements. Special values: -1 means no queue element, 0 means queue of unlimited size

Default: 0

model

Path to inference model network file

Default: “”

ie-config

Comma separated list of KEY=VALUE parameters for inference configuration

Default: “”

device

Target device for inference. Please see inference backend documentation (ex, OpenVINO™ Toolkit) for list of supported devices.

Default: CPU

model-instance-id

Identifier for sharing resources between inference elements of the same type. Elements with the instance-id will share model and other properties. If not specified, a unique identifier will be generated.

Default: “”

nireq

Maximum number of inference requests running in parallel

Default: 0

batch-size

Number of frames batched together for a single inference. If the batch-size is 0, then it will be set by default to be optimal for the device. Not all models support batching. Use model optimizer to ensure that the model has batching support.

Default: 0

model-proc

Path to JSON file with parameters describing how to build pre-process and post-process sub-pipelines

Default: “”

pre-process-backend

Preprocessing backend type

Default: <enum Automatic of type VideoInferenceBackend>

inference-interval

Run inference for every Nth frame

Default: 1

roi-inference-interval

Determines how often to run inference on each ROI object. Only valid if each ROI object has unique object id (requires object tracking after object detection)

Default: 1

inference-region

Region on which inference will be performed - full-frame or on each ROI (region of interest)bounding-box area

Default: <enum Perform inference for full frame of type VideoInferenceRegion>

object-class

Run inference only on Region-Of-Interest with specified object class

Default: “”

labels

Path to file containing model’s output layer labels or comma separated list of KEY=VALUE pairs where KEY is name of output layer and VALUE is path to labels file. If provided, labels from model-proc won’t be loaded

Default: “”

labels-file

Path to file containing model’s output layer labels. If provided, labels from model-proc won’t be loaded

Default: “”

attach-tensor-data

If true, metadata will contain both post-processing results and raw tensor data. If false, metadata will contain post-processing results only.

Default: True

threshold

Threshold for detection results. Only regions of interest with confidence values above the threshold will be added to the frame. Zero means default (auto-selected) threshold

Default: 0.0

scale-method

Scale method to use in pre-preprocessing before inference

Default: <enum Default of type VideoInferenceScaleMethod>

repeat-metadata

If true and inference-interval > 1, metadata with last inference results will be attached to frames if inference skipped. If true and roi-inference-interval > 1, it requires object-id for each roi, so requires object tracking element inserted before this element.

Default: False

batch_create#

Accumulate multiple buffers into single buffer with multiple GstMemory

Capabilities#

SRC template: src

  • Availability: Always

SINK template: sink

  • Availability: Always

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

qos

Handle Quality-of-Service events

Default: False

batch-size

Number of frames to batch together

Default: 1

batch_split#

Split input tensor (remove batch dimension from tensor shape)

Capabilities#

SRC template: src

  • Availability: Always

SINK template: sink

  • Availability: Always

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

qos

Handle Quality-of-Service events

Default: False

capsrelax#

Pass data without modification, relaxes formats

Capabilities#

SINK template: sink

  • Availability: Always

SRC template: src

  • Availability: Always

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

qos

Handle Quality-of-Service events

Default: False

gvadrop#

Pass / drop custom number of frames in pipeline

Capabilities#

SINK template: sink

  • Availability: Always

SRC template: src

  • Availability: Always

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

qos

Handle Quality-of-Service events

Default: False

pass-frames

Number of frames to pass along the pipeline.

Default: 1

drop-frames

Number of frames to drop.

Default: 0

mode

Mode defines what to do with dropped frames

Default: <enum Default of type GvaDropMode>

meta_aggregate#

Muxes video streams with tensor’s ROI into single stream

Capabilities#

SINK template: meta_%u

  • Availability: On request

  • Capabilities:

    • video/x-raw

SINK template: tensor_%u

  • Availability: On request

  • Capabilities:

    • other/tensors

SINK template: sink

  • Availability: Always

SRC template: src

  • Availability: Always

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

latency

Additional latency in live mode to allow upstream to take longer to produce buffers for the current position (in nanoseconds)

Default: 0

min-upstream-latency

When sources with a higher latency are expected to be plugged in dynamically after the aggregator has started playing, this allows overriding the minimum latency reported by the initial source(s). This is only taken into account when larger than the actually reported minimum latency. (nanoseconds)

Default: 0

start-time-selection

Decides which start time is output

Default: <enum GST_AGGREGATOR_START_TIME_SELECTION_ZERO of type GstAggregatorStartTimeSelection>

start-time

Start time to use if start-time-selection=set

Default: 18446744073709551615

emit-signals

Send signals

Default: False

attach-tensor-data

If true, additionally copies tensor data into metadata

Default: True

meta_smooth#

smooth metadata

Capabilities#

SRC template: src

  • Availability: Always

SINK template: sink

  • Availability: Always

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

qos

Handle Quality-of-Service events

Default: False

roi_split#

Split buffer with multiple GstVideoRegionOfInterestMeta into multiple buffers

Capabilities#

SRC template: src

  • Availability: Always

SINK template: sink

  • Availability: Always

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

qos

Handle Quality-of-Service events

Default: False

object-class

Filter ROI list by object class(es) (comma separated list if multiple). Output only ROIs with specified object class(es)

Default: “”

video_frames_buffer#

Buffer and optionally repeat compressed video frames

Capabilities#

SRC template: src

  • Availability: Always

SINK template: sink

  • Availability: Always

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

qos

Handle Quality-of-Service events

Default: False

num-input-frames

Number input frames to buffer

Default: 0

num-output-frames

Max number output frames in ‘loop’ mode

Default: 0

rate_adjust#

Adjust frame rate. Output frame rate is input rate multiplied by (numerator/denominator)

Capabilities#

SINK template: sink

  • Availability: Always

SRC template: src

  • Availability: Always

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

qos

Handle Quality-of-Service events

Default: False

ratio

Frame rate ratio - output frame rate is input rate multiplied by specified ratio. Current limitation: ratio <= 1

Default: None

tensor_convert#

Convert (zero-copy if possible) between video/audio and tensors media type

Capabilities#

SINK template: sink

  • Availability: Always

  • Capabilities:

    • video/x-raw

      • format: RGB

    • video/x-raw

      • format: BGR

    • video/x-raw

      • format: RGBA

    • video/x-raw

      • format: BGRA

    • video/x-raw

      • format: RGBP

    • video/x-raw

      • format: BGRP

SRC template: src

  • Availability: Always

  • Capabilities:

    • other/tensors

      • num_tensors: 1

      • types: uint8

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

qos

Handle Quality-of-Service events

Default: False

tensor_histogram#

Calculates histogram on tensors of UInt8 data type and NHWC layout

Capabilities#

SINK template: sink

  • Availability: Always

  • Capabilities:

    • other/tensors

      • num_tensors: 1

      • types: uint8

SRC template: src

  • Availability: Always

  • Capabilities:

    • other/tensors

      • num_tensors: 1

      • types: float32

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

qos

Handle Quality-of-Service events

Default: False

width

Input tensor width, assuming tensor in NHWC or NCHW layout

Default: 64

height

Input tensor height, assuming tensor in NHWC or NCHW layout

Default: 64

num-slices-x

Number slices along X-axis

Default: 1

num-slices-y

Number slices along Y-axis

Default: 1

num-bins

Number bins in histogram calculation. Example, for 3-channel tensor (RGB image), output histogram size is equal to (num_bin^3 * num_slices_x * num_slices_y)

Default: 8

batch-size

Batch size

Default: 1

device

CPU or GPU or GPU.0, GPU.1, ..

Default: “”

tensor_postproc_add_params#

Post-processing to only add properties/parameters to metadata

Capabilities#

SINK template: sink

  • Availability: Always

  • Capabilities:

    • other/tensors

SRC template: src

  • Availability: Always

  • Capabilities:

    • other/tensors

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

qos

Handle Quality-of-Service events

Default: False

attribute-name

Name for metadata created and attached by this element

Default: attribute

format

Format description

Default: “”

tensor_postproc_detection#

Post-processing of object detection inference to extract bounding box coordinates, confidence, label, mask

Capabilities#

SINK template: sink

  • Availability: Always

  • Capabilities:

    • other/tensors

SRC template: src

  • Availability: Always

  • Capabilities:

    • other/tensors

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

qos

Handle Quality-of-Service events

Default: False

labels

Array of object classes

Default: None

labels-file

Path to .txt file containing object classes (one per line)

Default: “”

threshold

Detection threshold - only objects with confidence values above the threshold will be added to the frame

Default: 0.5

box-index

Index of layer containing bounding box data

Default: -1

confidence-index

Index of layer containing confidence data

Default: -1

label-index

Index of layer containing label data

Default: -1

imageid-index

Index of layer containing imageid data

Default: -1

mask-index

Index of layer containing mask data

Default: -1

box-offset

Offset inside layer containing bounding box data

Default: -1

confidence-offset

Offset inside layer containing confidence data

Default: -1

label-offset

Offset inside layer containing label data

Default: -1

imageid-offset

Offset inside layer containing imageid data

Default: -1

tensor_postproc_label#

Post-processing of classification inference to extract object classes

Capabilities#

SINK template: sink

  • Availability: Always

  • Capabilities:

    • other/tensors

SRC template: src

  • Availability: Always

  • Capabilities:

    • other/tensors

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

qos

Handle Quality-of-Service events

Default: False

method

Method used to post-process tensor data

Default: <enum max of type method>

labels

Array of object classes

Default: None

labels-file

Path to .txt file containing object classes (one per line)

Default: “”

attribute-name

Name for metadata created and attached by this element

Default: “”

layer-name

Name of output layer to process (in case of multiple output tensors)

Default: “”

threshold

Threshold for confidence values

Default: 0.0

compound-threshold

Threshold for compound method

Default: 0.5

tensor_postproc_text#

Post-processing to convert tensor data into text

Capabilities#

SINK template: sink

  • Availability: Always

  • Capabilities:

    • other/tensors

SRC template: src

  • Availability: Always

  • Capabilities:

    • other/tensors

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

qos

Handle Quality-of-Service events

Default: False

text-scale

Scale tensor values before converting to text

Default: 1.0

text-precision

Precision for floating-point to text conversion

Default: 0

attribute-name

Name for metadata created and attached by this element

Default: “”

layer-name

Name of output layer to process (in case of multiple output tensors)

Default: “”

tensor_postproc_yolo#

Post-processing of YOLO models to extract bounding box list

Capabilities#

SINK template: sink

  • Availability: Always

  • Capabilities:

    • other/tensors

SRC template: src

  • Availability: Always

  • Capabilities:

    • other/tensors

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

qos

Handle Quality-of-Service events

Default: False

version

Yolo’s version number. Supported only from 3 to 5

Default: 0

labels

Array of object classes

Default: None

labels-file

Path to .txt file containing object classes (one per line)

Default: “”

threshold

Detection threshold - only objects with confidence value above the threshold will be added to the frame

Default: 0.5

anchors

Anchor values array

Default: None

masks

Masks values array (1 dimension)

Default: None

iou-threshold

IntersectionOverUnion threshold

Default: 0.5

do-cls-softmax

If true, perform softmax

Default: True

output-sigmoid-activation

output_sigmoid_activation

Default: True

cells-number

Number of cells. Use if number of cells along x and y axes is the same (0 = autodetection)

Default: 0

cells-number-x

Number of cells along x-axis

Default: 0

cells-number-y

Number of cells along y-axis

Default: 0

bbox-number-on-cell

Number of bounding boxes that can be predicted per cell (0 = autodetection)

Default: 0

classes

Number of classes

Default: 0

nms

Apply Non-Maximum Suppression (NMS) filter to bounding boxes

Default: True

tensor_sliding_window#

Sliding aggregation of input tensors

Capabilities#

SINK template: sink

  • Availability: Always

  • Capabilities:

    • other/tensors

SRC template: src

  • Availability: Always

  • Capabilities:

    • other/tensors

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

qos

Handle Quality-of-Service events

Default: False

openvino_tensor_inference#

Inference on OpenVINO™ toolkit backend

Capabilities#

SINK template: sink

  • Availability: Always

  • Capabilities:

    • other/tensors

    • other/tensors

SRC template: src

  • Availability: Always

  • Capabilities:

    • other/tensors

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

qos

Handle Quality-of-Service events

Default: False

model

Path to model file in OpenVINO™ toolkit or ONNX format

Default: “”

device

Target device for inference. Please see OpenVINO™ toolkit documentation for list of supported devices.

Default: CPU

config

Comma separated list of KEY=VALUE parameters for Inference Engine configuration

Default: “”

batch-size

Batch size

Default: 1

buffer-pool-size

Output buffer pool size (functionally same as OpenVINO™ toolkit nireq parameter)

Default: 16

shared-instance-id

Identifier for sharing backend instance between multiple elements, for example in elements processing multiple inputs

Default: “”

openvino_video_inference#

Inference on OpenVINO™ toolkit backend

Capabilities#

SINK template: sink

  • Availability: Always

  • Capabilities:

    • video/x-raw

      • format: NV12

SRC template: src

  • Availability: Always

  • Capabilities:

    • other/tensors

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

qos

Handle Quality-of-Service events

Default: False

model

Path to model file in OpenVINO™ toolkit or ONNX format

Default: “”

device

Target device for inference. Please see OpenVINO™ toolkit documentation for list of supported devices.

Default: CPU

config

Comma separated list of KEY=VALUE parameters for Inference Engine configuration

Default: “”

batch-size

Batch size

Default: 1

buffer-pool-size

Output buffer pool size (functionally same as OpenVINO™ toolkit nireq parameter)

Default: 16

shared-instance-id

Identifier for sharing backend instance between multiple elements, for example in elements processing multiple inputs

Default: “”

opencv_cropscale#

Fused video crop and scale on OpenCV backend. Crop operation supports GstVideoCropMeta if attached to input buffer

Capabilities#

SINK template: sink

  • Availability: Always

  • Capabilities:

    • video/x-raw

      • format: RGB

    • video/x-raw

      • format: BGR

    • video/x-raw

      • format: RGBA

    • video/x-raw

      • format: BGRA

SRC template: src

  • Availability: Always

  • Capabilities:

    • video/x-raw

      • format: RGB

    • video/x-raw

      • format: BGR

    • video/x-raw

      • format: RGBA

    • video/x-raw

      • format: BGRA

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

qos

Handle Quality-of-Service events

Default: False

add-borders

Add borders if necessary to keep the aspect ratio

Default: False

opencv_find_contours#

Find contour points of given mask using opencv

Capabilities#

SINK template: sink

  • Availability: Always

SRC template: src

  • Availability: Always

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

qos

Handle Quality-of-Service events

Default: False

mask-metadata-name

Name of metadata containing segmentation mask

Default: mask

contour-metadata-name

Name of metadata created by this element to store contour(s)

Default: contour

threshold

Mask threshold - only mask pixels with confidence values above the threshold will be used for finding contours

Default: 0.5

opencv_meta_overlay#

Visualize inference results using OpenCV

Capabilities#

SINK template: sink

  • Availability: Always

  • Capabilities:

    • video/x-raw

      • format: BGRA

    • video/x-raw

      • format: RGBA

    • video/x-raw

      • format: BGRA

    • video/x-raw

      • format: RGBA

SRC template: src

  • Availability: Always

  • Capabilities:

    • video/x-raw

      • format: BGRA

    • video/x-raw

      • format: RGBA

    • video/x-raw

      • format: BGRA

    • video/x-raw

      • format: RGBA

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

qos

Handle Quality-of-Service events

Default: False

lines-thickness

Thickness of lines and rectangles

Default: 2

font-thickness

Font thickness

Default: 1

font-scale

Font scale

Default: 1.0

attach-label-mask

Attach label mask as metadata, image not changed

Default: False

opencv_object_association#

Assigns unique ID to ROI objects based on objects trajectory and (optionally) feature vector obtained from ROI metadata

Capabilities#

SINK template: sink

  • Availability: Always

SRC template: src

  • Availability: Always

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

qos

Handle Quality-of-Service events

Default: False

generate-objects

If true, generate objects (according to previous trajectory) if not detected on current frame

Default: True

adjust-objects

If true, adjust object position for more smooth trajectory

Default: True

tracking-per-class

If true, object association takes into account object class

Default: False

spatial-feature-metadata-name

Name of metadata containing spatial feature

Default: spatial-feature

spatial-feature-distance

Method to calculate distance between two spatial features

Default: <enum bhattacharyya of type spatial-feature-distance>

shape-feature-weight

Weighting factor for shape-based feature

Default: 0.75

trajectory-feature-weight

Weighting factor for trajectory-based feature

Default: 0.5

spatial-feature-weight

Weighting factor for spatial feature

Default: 0.25

min-region-ratio-in-boundary

Min region ratio in image boundary

Default: 0.75

opencv_remove_background#

Remove background using mask

Capabilities#

SINK template: sink

  • Availability: Always

  • Capabilities:

    • video/x-raw

      • format: RGB

    • video/x-raw

      • format: BGR

    • video/x-raw

      • format: RGBA

    • video/x-raw

      • format: BGRA

SRC template: src

  • Availability: Always

  • Capabilities:

    • video/x-raw

      • format: RGB

    • video/x-raw

      • format: BGR

    • video/x-raw

      • format: RGBA

    • video/x-raw

      • format: BGRA

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

qos

Handle Quality-of-Service events

Default: False

mask-metadata-name

Name of metadata containing segmentation mask

Default: mask

threshold

Mask threshold - only mask pixels with confidence values above the threshold will be used for setting transparency

Default: 0.5

opencv_tensor_normalize#

Convert U8 tensor to F32 tensor with normalization

Capabilities#

SINK template: sink

  • Availability: Always

  • Capabilities:

    • other/tensors

      • num_tensors: 1

      • types: uint8

SRC template: src

  • Availability: Always

  • Capabilities:

    • other/tensors

      • num_tensors: 1

      • types: float32

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

qos

Handle Quality-of-Service events

Default: False

range

Normalization range MIN, MAX. Example: <0,1>

Default: None

mean

Mean values per channel. Example: <0.485,0.456,0.406>

Default: None

std

Standard deviation values per channel. Example: <0.229,0.224,0.225>

Default: None

opencv_warp_affine#

Rotation using cv::warpAffine

Capabilities#

SINK template: sink

  • Availability: Always

  • Capabilities:

    • video/x-raw

      • format: RGB

    • video/x-raw

      • format: BGR

    • video/x-raw

      • format: RGBA

    • video/x-raw

      • format: BGRA

SRC template: src

  • Availability: Always

  • Capabilities:

    • video/x-raw

      • format: RGB

    • video/x-raw

      • format: BGR

    • video/x-raw

      • format: RGBA

    • video/x-raw

      • format: BGRA

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

qos

Handle Quality-of-Service events

Default: False

angle

Angle by which the picture is rotated (in radians)

Default: 0.0

sync

Wait for OpenCL kernel completion (if running on GPU via cv::UMat)

Default: False

tensor_postproc_human_pose#

Post-processing to extract key points from human pose estimation model output

Capabilities#

SINK template: sink

  • Availability: Always

  • Capabilities:

    • other/tensors

SRC template: src

  • Availability: Always

  • Capabilities:

    • other/tensors

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

qos

Handle Quality-of-Service events

Default: False

point-names

Array of key point names

Default: None

point-connections

Array of point connections {name-A0, name-B0, name-A1, name-B1, …}

Default: None

vaapi_batch_proc#

Batched pre-processing with VAAPI memory as input and output

Capabilities#

SINK template: sink

  • Availability: Always

  • Capabilities:

    • video/x-raw

SRC template: src

  • Availability: Always

  • Capabilities:

    • other/tensors

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

qos

Handle Quality-of-Service events

Default: False

add-borders

Add borders if necessary to keep the aspect ratio

Default: False

output-format

Image format for output frames: BGR or RGB or GRAY

Default: BGR

shared-instance-id

Identifier for sharing backend instance between multiple elements, for example in elements processing multiple inputs

Default: “”

vaapi_sync#

Synchronize VAAPI surfaces (call vaSyncSurface)

Capabilities#

SINK template: sink

  • Availability: Always

  • Capabilities:

    • video/x-raw

SRC template: src

  • Availability: Always

  • Capabilities:

    • video/x-raw

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

qos

Handle Quality-of-Service events

Default: False

timeout

Synchronization timeout (seconds)

Default: 10.0

opencl_tensor_normalize#

Convert U8 tensor to U8 or F32 tensor with normalization

Capabilities#

SINK template: sink

  • Availability: Always

  • Capabilities:

    • other/tensors

SRC template: src

  • Availability: Always

  • Capabilities:

    • other/tensors

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

qos

Handle Quality-of-Service events

Default: False

shared-instance-id

Identifier for sharing backend instance between multiple elements, for example in elements processing multiple inputs

Default: “”

vaapi_to_opencl#

Convert memory:VASurface to memory:OpenCL

Capabilities#

SINK template: sink

  • Availability: Always

  • Capabilities:

    • video/x-raw

    • other/tensors

SRC template: src

  • Availability: Always

  • Capabilities:

    • other/tensors

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

qos

Handle Quality-of-Service events

Default: False

sycl_meta_overlay#

Visualize inference results using DPC++/SYCL backend

Capabilities#

SINK template: sink

  • Availability: Always

  • Capabilities:

    • video/x-raw

      • format: BGRA

    • video/x-raw

      • format: RGBA

SRC template: src

  • Availability: Always

  • Capabilities:

    • video/x-raw

      • format: BGRA

    • video/x-raw

      • format: RGBA

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

qos

Handle Quality-of-Service events

Default: False

lines-thickness

Thickness of lines and rectangles

Default: 2

sycl_tensor_histogram#

Calculates histogram on tensors of UInt8 data type and NHWC layout

Capabilities#

SINK template: sink

  • Availability: Always

  • Capabilities:

    • other/tensors

      • num_tensors: 1

      • types: uint8

    • other/tensors

      • num_tensors: 1

      • types: uint8

SRC template: src

  • Availability: Always

  • Capabilities:

    • other/tensors

      • num_tensors: 1

      • types: float32

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

qos

Handle Quality-of-Service events

Default: False

width

Input tensor width, assuming tensor in NHWC or NCHW layout

Default: 64

height

Input tensor height, assuming tensor in NHWC or NCHW layout

Default: 64

num-slices-x

Number slices along X-axis

Default: 1

num-slices-y

Number slices along Y-axis

Default: 1

num-bins

Number bins in histogram calculation. Example, for 3-channel tensor (RGB image), output histogram size is equal to (num_bin^3 * num_slices_x * num_slices_y)

Default: 8

batch-size

Batch size

Default: 1

device

CPU or GPU or GPU.0, GPU.1, ..

Default: “”

inference_openvino#

OpenVINO™ toolkit inference element

Capabilities#

SRC template: src

  • Availability: Always

  • Capabilities:

    • other/tensors

SINK template: sink

  • Availability: Always

  • Capabilities:

    • other/tensors

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

qos

Handle Quality-of-Service events

Default: False

device

Inference device

Default: CPU

model

OpenVINO™ toolkit model path

Default: “”

nireq

Number inference requests

Default: 0

pytorch_tensor_inference#

PyTorch inference element

Capabilities#

SRC template: src

  • Availability: Always

  • Capabilities:

    • other/tensors

SINK template: sink

  • Availability: Always

  • Capabilities:

    • other/tensors

Properties#

Name

Description

name

The name of the object

Default: None

parent

The parent of the object

Default: None

qos

Handle Quality-of-Service events

Default: False

device

Inference device

Default: cpu

model

The full module name of the PyTorch model to be imported from torchvision or model path. Ex. ‘torchvision.models.resnet50’ or ‘/path/to/model.pth’

Default: “”

model-weights

PyTorch model weights path. If model-weights is empty, the default weights will be used

Default: “”